Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data
نویسندگان
چکیده
Impervious surface area (ISA) is an important parameter for many studies such as urban climate, urban environmental change, and air pollution; however, mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data have been used for ISA mapping, but high uncertainty existed due to mixed-pixel and data-saturation problems. This paper presents a new index called normalized impervious surface index (NISI), which is an integration of DMSP-OLS and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data, in order to reduce these problems. Meanwhile, this newly developed index is compared with previously used indices—Human Settlement Index (HSI) and Vegetation Adjusted Nighttime light Urban Index (VANUI)—in ISA mapping performance. We selected China as an example to map fractional ISA distribution through a support vector regression approach based on the relationship between the index and Landsat-derived ISA data. The results indicate that the proposed NISI provided better ISA estimation accuracy than HSI and VANUI, especially when the fractional ISA in a pixel is relatively large (i.e., >0.6) or very small (i.e., <0.2). This approach can be used to rapidly update ISA datasets at regional and global scales.
منابع مشابه
A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area
Mapping Impervious Surface Area (ISA) at regional and global scales has attracted increasing interest. DMSP-OLS nighttime light (NTL) data have proven to be successful for mapping urban land in large areas. However, the well-documented issues of pixel blooming and saturation limit the ability of DMSP-OLS data to provide accurate urban information. In this paper, a multi-source composition index...
متن کاملRegional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification
Stable night-time light data from the Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper presents a regional urban extent extraction method using a one-class classifier and combinations of DMSP/OLS stable night-time light (NTL) data, MODIS normalized difference vegetation index (NDVI) data, and land...
متن کاملRegional urban area extraction using DMSP-OLS data and MODIS data
Stable night lights data from Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper proposed two new methods of extracting regional urban extents using DMSP-OLS data, MODIS NDVI data and Land Surface Temperature (LST) data. MODIS NDVI data were used to reduce the over-glow effect, since urban areas gen...
متن کاملThe Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious Surface Dynamics: A Case Study in the Yangtze River Delta
The timely and reliable estimation of imperviousness is essential for the scientific understanding of human-Earth interactions. Due to the unique capacity of capturing artificial light luminosity and long-term data records, the Defense Meteorological Satellite Program (DMSP)’s Operational Line-scan System (OLS) nighttime light (NTL) imagery offers an appealing opportunity for continuously chara...
متن کاملMapping Impervious Surface Distribution with Integration of SNNP VIIRS-DNB and MODIS NDVI Data
Data from the U.S. Defense Meteorological Satellite Program’s Operational Line-scan System are often used to map impervious surface area (ISA) distribution at regional and global scales, but its coarse spatial resolution and data saturation produce high inaccuracy in ISA estimation. Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite’s Day/Night Band (VIIR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017